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Abstract 

The study aims to explore the potential of next-generation satellite hyperspectral imaging 

systems for screening and predicting surface soil contamination/degradation in heavily 

industrialized areas, by exploiting various spectral indices and signature matching 

techniques. The study area comprised of 07 industrial tailing ponds, 05 material dump sites, 

07-08 coal storages, 05 power plants and 07-08 industrial units including three aluminum 

factories. The soil moisture content, desertification status, salinity index, clay or fine material 

content, heavy metal indices, vegetation health status, and stress levels were predicted from 

continuum-removed spectral reflectance values. Results indicated the presence of water in 

02 tailing ponds, high salinity, and desertification values in most of the ponds and dump 

sites, clay boundary liner along four ponds, high heavy metal indices along three ponds and 

all dump sites, highly stressed vegetation near all tailing ponds and coal dump sites, and 

pollutants in nearby water channels. The results set a strategy for the initial identification of 

priority areas for ground-based investigations. The approach emphasizes the potential of 

satellite hyperspectral imaging as a screening tool for providing an alternative rapid 

methodology to monitor industrial hubs. 
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Introduction 

The mapping and monitoring of industrial byproducts or residues through their mineral 

composition at various sites, specifically in developing countries, is a topic of increasing 

interest as high risk factors for land, water, and air pollution. The various industrial 

byproducts or residues can also be reused and recycled under the framework of a cyclic 

economy, such as reducing the consumption of virgin raw materials in construction industry, 

landfilling and road development, agricultural activities etc. The characteristics of industrial 

byproducts or residues in tailing ponds or dump sites are mostly determined through 

extensive ground sampling and subsequent wet chemistry/lab analysis. These processes are 

expensive, time-consuming, tedious, and sometimes subjective. Monitoring diversified large 

industrial hubs through traditional techniques is unsuitable for a fast-developing economy 

like India. Remote sensing technologies, specifically satellite hyperspectral imaging, could 

provide rapid, precise, and economical monitoring of various industrial hubs for their impact 
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on the surrounding environment, and identification of policy gaps at the regional level in this 

regard.  

Hyperspectral imaging, also known as imaging spectroscopy can precisely identify the 

surface materials through their fingerprints, like spectral signatures. Undoubtedly, in the last 

three decades, hyperspectral imaging has proven its’ capability as a powerful and precise 

tool for environmental monitoring by diagnosing characteristic spectral signatures of various 

materials (Marion et al., 2018). It allowed researchers to exploit distinct spectral absorption 

features, their relative strength, shape etc., for precise identification and mapping the spatial 

distribution of various pollutants (Swayze et al., 2000; Mars et al., 2003; USGS, 2005; 

Pascucci et al., 2012). Researchers adopted diversified approaches such as spectral indices, 

usually developed using normalized band ratioing at absorption features (Asadzadeh et al., 

2016), spectral signature library matching techniques (Clark et al., 2003; Pascucci et al., 

2012; Marion et al., 2018), physically based approaches such as modified Gaussian model 

(Sunshine et al., 1990; Sunshine et al., 1993; Brossard et al., 2016), and more recently, 

machine learning/deep learning techniques are used for characterization of industrial and 

mining tailing using hyperspectral imageries.  

Satellite hyperspectral remote sensing-based mapping and monitoring of industrial 

byproducts or residues/pollutants through spectral signature analysis is still in infancy, 

especially in the Indian scenario. It is primarily due to the nonavailability of open domain 

satellite platform for hyperspectral imaging post Hyperion era (NASA E0-1 satellite, 

decommissioned in early 2017) and require specialized manpower and optimized processing 

algorithms. The present study attempts to fill this gap by exploiting next-generation German 

DLR EnMAP satellite hyperspectral datasets and specialized image processing techniques. To 

the best of our knowledge, this is the first report on the use of hyperspectral data from a 

satellite platform for industrial by-products or residues/pollutants mapping in India. The 

study aims to identify various soil and vegetation stress parameters by exploiting satellite 

hyperspectral spectral indices and spectral signature-based identification of industrial 

byproducts or residues/pollutants in a highly industrialized area in India. The approach 

emphasizes the potential of satellite hyperspectral imaging as a screening tool for providing 

an alternative rapid methodology to monitor industrial hubs. 

 

Materials and Methods 

 

Study Area: The study site is Jharsuguda Industrial Area in Odisha, located at 21.7840 N, 

84.0313 E, in the eastern central part of India. The industrial hub is spread over an area of 

approx. 30 Km x 30 Km, along the northern and eastern banks of Hirakud Reservoir with 

well-connected road and railway networks. Many aluminum factories, steel, and power 

industries, mining industries, quarrying sites, tailing ponds etc. are in the industrial hub. In 

the hyperspectral imagery of 19 April 2023, three aluminum plants with associated 

infrastructures (power plants, coal and material dumps, tailing ponds etc.), few power and 

metallurgical & steel plants, and numerous small industries, dumping and quarrying sites 

were identified using Google Earth and Open Street Maps (Figure 1). The diversified nature 

of the industrial hub, and its large spatial extent, provide a unique opportunity to map and 

monitor industrial pollutants in nearby areas using hyperspectral imaging, which otherwise, 
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through traditional ground surveying methods, would have taken months to generate a 

synoptic view with a huge cost burden. 

 

 
Fig. 1 Jharsuguda Industrial Area, Odisha, showing the locations of various industrial units, tailing 

ponds and nearby waterbodies from the hyperspectral imagery of 19 April 2023. 

Datasets and Materials: German DLR EnMAP satellite hyperspectral image of 19 April 2023 

with 212 bands (0.4-2.5 µm) covering the Jharsuguda Industrial Area, Odisha, was 

downloaded from https://eoweb.dlr.de/egp/ and exploited for various hyperspectral indices 

generation, and spectral analysis for material identification and pollutants mapping. In the 

absence of ground survey datasets for accuracy assessment, high resolution Google Earth 

multispectral imageries, Sentinel-Hub analytics and ground pictures were consumed. 

Methodology:After atmospheric and bad band corrections, EnMap hyperspectral imagery 

was exploited to generate six selected spectral indices: water index, salinity index, 

desertification index, soil clay content, iron oxide index, and vegetation stress index. The 

water index map was generated to highlight the moisture content within the industrial 

tailing ponds to indicate possible fresh deposits. Salinity and desertification indices together 

would highlight the soil health status in terms of acidification or various salt contents. Since 

soil clay content and organic matter have strong positive correlations with soil heavy metal 

concentration, clay and iron oxide indices were also incorporated for soil health analysis. The 

vegetation stress map based on greenness (Atmospherically Resistant Vegetation Index), 

canopy water content (Water Band Index), and plant light use efficiency (Anthocyanin 

Reflectance Index) for photosynthesis, was generated exploiting continuum removed spectra 

from hyperspectral image. These six indices individually and collectively identified the 

priority areas for ground-based investigations. The various spectral indices, formulae, utility, 

selected range, and references are summarized in Table 1. 

In parallel to calculation of spectral indices, machine learning-based spectral 

signature matching algorithms: Adaptive Coherence Estimator (ACE), Spectral Angle Mapper 

(SAM), Constrained Energy Minimization (CEM) and match filtering (MTMF), were also 
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verified in the context of efficient detection of industrial byproducts or residues in 

surrounding areas. Since the study site comprised at least three large aluminum extraction 

plants (Figure 1), and ~85% of the total bauxite produced worldwide is processed into 

aluminum, it is assumed that for these plants also, most likely, bauxite is used as raw 

material. Bauxite, which is formed by intense leaching in tropical and subtropical regions by 

laterization process, is a mixture of the aluminum hydroxides gibbsite, boehmite, diaspore, 

iron oxides goethite and hematite, along with kaolinite clay, and small amounts of titanium 

dioxide (Ghrefat et al. 2021). Bauxite is also used in cement, metallurgical, and chemical 

industries. The above hypothesis of bauxite being used as the raw material in these 

aluminum plants was tested with the presence of Bauxaline® or red mud dust (alkaline) 

residue of aluminum production, red gypsum (similar color residue), bauxite (ore), and 

Alumina (product) at the site exploiting spectral signature matching techniques.  

Table 1 Summary of various spectral indices exploited in the present study. 

Spectral Index Formula Utility & Range Reference 

Water Index (NDWI) 
(R_864nm–

R_1245nm)/(R_864nm+R_1245nm) 

Analyze the water presence in 

tailing ponds (>0) 

Gao (1996) 

Salinity Index (SI) √(R_436.99nm*R_630.32nm)  Soil salt concentration 

mapping (>1300) 

Kumar et al. 

(2015) 

Desertification 

Index (NMDI) 

R_860nm - (R_1640nm–R_2130nm)/ 

R_860nm + (R_1640nm–R_2130nm) 

Soil desertification measure 

(>0.9) 

Wang et al. 

(2007) 

Soil Clay Content Calculate continuum removed absorption 

depth 

between 2120 nm and 2250 nm. 

Clay mineral content (>0.17) Chabrillat et al. 

(2011) 

Iron Oxide Index (R_660nm)/(R_485nm) Estimation of heavy metal 

oxides in soil (>2) 

Segal (1982) 

Vegetation Stress 

Index 

ARVI= NIR – [Red-Υ (Blue-Red)]/ 

NIR + [Red-Υ (Blue-Red)] 

 

WBI=(R_970nm)/(R_900nm) 

 

ARI2= R_800nm (1/R_550nm–1/R_700nm)/ 

Relative assessment of 

vegetation stress in a scale 

between 1 and 9 (>5) 

ENVI 

(https://www.n

v5geospatialsof

tware.com/doc

s/AgriculturalSt

ressTool.html) 

 

Results 

Results of the two parallel steps i.e., spectral indices generation, and spectral matching, 

adopted in the study are separately described in the subsequent paragraphs. 

Spectral Indices: 

Water Index: In Normalized Difference Water Index (NDWI) defined by Gao (1996), positive 

values highlight the pixels with water presence. In the present study area, high water 

presence was detected in tailing pond-1 (P1 in Figure 2b) inside the aluminum processing 

plants. Out of the five tailing ponds maintained by Vedanta (P-1 to P-5; Figure 2a), pond-1 

had water presence, and pond-5 had relatively higher moisture content compared to the 

other four tailing ponds.  

Salinity Index: The soil salinity, a measure of soil degradation, is determined by Salinity Index 

(SI) developed by Kumar et al. (2015). In the study area, most of the places showed 
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moderate-low salinity, except the five material dump sites (S1-S5) and the tailing pond-1, 

where severely saline soils were detected (>1500-1600) using SI (Figure 2c). 

Desertification Index: NDMI developed by Wang et al. (2007), can highlight the pixels with 

very low moisture content leading to higher soil desertification. In consistence with previous 

sub-section findings, at the tailing pond-1, higher desertification index values (>0.9) were 

detected. In addition, the tailing ponds 3 and 5 also indicated higher positive values in their 

western parts (Figure 2d). 

 

 

Fig. 2 (a) Overall location of tailing ponds and material dump sites. (b) Water index map.  (c) Soil 

salinity index map, (d) Desertification index map. (e) Soil clay content map. (f) Iron oxide index. (g) 

Vegetation stress map (relative). 

Soil Clay Content: As suggested by Chabrillat et al. (2011), soil clay content measure 

calculates continuum removed absorption depth difference between 2120 nm and 2250 nm, 

and highlights the pixels with higher clay content. For material dump sites 2 and 5 (S-2 & S-

5), higher clay index values >0.2 were observed, indicating the presence of finer materials in 

higher quantities at these sites. Tailing pond-2 also had index values >0.13, the highest 

among all tailing ponds, indicating more clay content than other ponds (Figure 2e). 

Incidentally, the clay index also highlighted the clay liner barrier along the boundaries of five 

tailing ponds (P1-P5) in aluminum mills.  

 

Iron Oxide Index: Developed by Segal (1982), the iron oxide ratio estimates the heavy metal 

oxide contents in soil. For the study area, >2 index values were observed for four material 

dump sites (S-2 to S-5) and at three tailing ponds (P-2, P-6, and P-7) (Figure 2f). 
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Vegetation Stress Index: The vegetation stress index map is a combined score of plant 

greenness (ARVI), canopy water content (WBI) and light use efficiency (ARI) indices and 

significantly high (scores 8 and 9 on a scale of 1-9) stress was observed along the boundary 

regions of mining tailing ponds and coal dumping sites (Figure 2g). 

Spectral Matching: Standard spectral signature libraries of Bauxaline® or red mud dust 

(alkaline) residue from aluminum production, red gypsum (similar color residue as 

Bauxaline®, but waste material of titanium dioxide extraction from ilmenite and rutile), 

bauxite (ore), and alumina (finish product) were collected from literature (Marion et al. 

2018), resampled and filtered at EnMAP spectral bands before feeding into the system. 

Subsequently, the same target signatures were used in machine learning algorithms (ACE, 

CEM, SAM, MTMF) for detection in hyperspectral imagery. The reference signature of 

Bauxaline®, the waste product of aluminum extraction, was automatically detected by ACE 

algorithm at eleven places of 30 Km x 30 Km area covered in the hyperspectral imagery, 

although the other target detection algorithms could not perform reasonably. High-

resolution Google Earth multispectral images of concurrent/nearby time indicated the 

presence of red dust at the same places (Figure 3). Therefore, it can be summarized that 

spectral signature matching techniques successfully detected the aluminum waste products 

from satellite hyperspectral imagery. It gives an idea about the nature of the industrial 

activities at the industrial hub. The bauxite ore and finished product alumina were not 

detected from satellite hyperspectral image-based signature matching techniques, as 

probably these materials are being kept under the sheds due to their economic values, while 

like Bauxaline® waste products are stored in the open. 

 

 
Fig. 3 Signature matching results. (a) location of Bauxaline deposits. (b) Spectral signatures. (c) 

Detection results plotted on high-resolution Google Earth multispectral imagery for better perception. 

Discussion 

The values of the three spectral indices (NDWI, SI, and NDMI) clearly highlight that the 

industrial tailing pond-1 located within aluminum mill complexes had highly saline and 

degraded surface materials/soils with the presence of water, which in turn may indicate that 

it is operational. Similarly, the material dump site-2, located adjacent to the tailing pond-1, 
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had high salinity, large clay/fine content, and high concentrations of heavy metals as 

discerned from hyperspectral imagery. This prioritizes the place for ground-based 

investigations, the first objective of the present study. In addition, tailing ponds 2, 6, and 7 

also showed high values in heavy metal index. Samples from these three tailing ponds need 

to be collected and tested in a laboratory for further corroboration of the findings. The 

vegetation stress map (combined score of greenness, canopy water content, and light use 

efficiency) depicted high stress near the coal dumping sites, indicating possible high dust 

pollution in nearby areas. 

Spectral signature matching techniques identified dumping of Bauxaline®/red mud 

residue at tailing ponds 6 and 7 along with ten other places. The locations were validated 

with Google Earth high-resolution multispectral images, which indicates about 80-90% 

accuracy in detection results. Moreover, there were many places with similar red dust as 

discerned from high resolution multispectral images, but these were not detected from 

hyperspectral images. It also highlights the unique capability of hyperspectral imaging 

technology, although these findings are pending ground verification. The detected 

Bauxaline®/red mud residue in imagery is reportedly highly alkaline, and generally composed 

of iron, silica, alumina, titanium, calcium minerals, sodium salts, and trace amounts of 

various elements such as barium, boron, cadmium, chromium, cobalt, gallium, lead, 

scandium, and vanadium (Marion et al. 2018) and must be contained in engineered storage 

facilities. Dry Bauxaline®/red mud residue has a high potential for air pollution if kept in the 

open. Therefore, scientific management of Bauxaline®/red mud residue should be followed. 

 

Conclusions 

The present study highlights the efficiency of next-generation hyperspectral satellites 

for rapid, precise, and economical monitoring of complex industrial hubs in rapidly growing 

nations like India. It delineates the priority areas for further ground-based investigations. The 

methodology presented in the article could be adopted for policy decision-making and 

implementation at regional level. 
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